Proton transfer and the diffusion of H+ and OH- ions along water wires.
نویسندگان
چکیده
Hydrogen and hydroxide ion transport in narrow carbon nanotubes (CNTs) of diameter 8.1 Å and lengths up to 582 Å are investigated by molecular dynamics simulations using a dissociating water model. The diffusion coefficients of the free ions in an open chain are significantly larger than in periodically replicated wires that necessarily contain D or L end defects, and both are higher than they are in bulk water. The free hydroxide ion diffuses faster than the free hydronium ion in short CNTs, unlike diffusion in liquid water, and both coefficients increase and converge to nearly the same value with increasing tube length. The diffusion coefficients of the two ions increase further when the tubes are immersed in a water reservoir and they move easily out of the tube, suggesting an additional pathway for proton transport via OH(-) ions in biological channels.
منابع مشابه
Proton transfer and the mobilities of the H+ and OH- ions from studies of a dissociating model for water.
Hydrogen (H(+)) and hydroxide (OH(-)) ions in aqueous solution have anomalously large diffusion coefficients, and the mobility of the H(+) ion is nearly twice that of the OH(-) ion. We describe molecular dynamics simulations of a dissociating model for liquid water based on scaling the interatomic potential for water developed by Ojamäe-Shavitt-Singer from ab initio studies at the MP2 level. We...
متن کاملH+-type and OH−-type biological protonic semiconductors and complementary devices
Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H(+) hop along chains of hydrogen bonds between water molecules and hydrophilic residues - proton wires. These wires also support the transport of OH(-) as proton hole...
متن کاملThe onset of electron-induced proton-transfer in hydrated azabenzene cluster anions.
The prospect that protons from water may be transferred to N-heterocyclic molecules due to the presence of an excess electron is studied in hydrated azabenzene cluster anions using anion photoelectron spectroscopy and computational chemistry. In the case of s-triazine (C3H3N3), which has a positive adiabatic electron affinity, proton transfer is not energetically favored nor observed experiment...
متن کاملProton transfer dynamics at the membrane/water interface: dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier.
Crossing the membrane/water interface is an indispensable step in the transmembrane proton transfer. Elsewhere we have shown that the low dielectric permittivity of the surface water gives rise to a potential barrier for ions, so that the surface pH can deviate from that in the bulk water at steady operation of proton pumps. Here we addressed the retardation in the pulsed proton transfer across...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 139 12 شماره
صفحات -
تاریخ انتشار 2013